物质科学公共实验平台

质量管理文件

扫描电镜阴极荧光联用系统 标准操作规程

物质科学公共实验平台 发布

修订页

修订日期	版本号	修订说明	修订	审核	批准
2024.4.1	V1.0	发布试行	曹文菁		

目录

1.	扫描电镜实验室安全管理规范	1
2.	扫描电镜阴极荧光联用系统使用制度	2
	2.1使用方案	2
	2.2使用注意事项	2
	2.3预约制度	3
	2.4 培训考核制度	3
	2.5仪器故障报告	3
	2.6物质科学平台致谢格式	3
3.	扫描电镜阴极荧光联用系统标准操作步骤	5
	3.1 仪器基本信息	5
	3.2 样品准备	6
	3.3 仪器状态检查	7
	3.4 登录基理系统、进样前检查	7
	3.5 交换舱面板介绍、载样	8
	3.6 电子束参数设置、探测器选择	.12
	3.7 观察拍照	.13
	3.8 结束观察	.20
4.	能谱仪的操作步骤	.23
5.	CL 操作步骤	.29
6.	真空转移盒操作步骤	.39

1. 扫描电镜实验室安全管理规范

- 进入实验室的所有师生需通过实验室安全准入考试,熟悉消防安全基本知识、化学 危险品安全知识、用电/用水/用气常识,严禁在实验室内饮食、抽烟、大声喧哗。
- 1.2 实验室内所有仪器需提前在大仪共享网站预约机时,且经培训考核后方可操作,未 经考核者严禁上机。
- 1.3 禁止将自己的账号借给他人使用,尤其不可借给没有操作权限的人上机操作,一经 发现,永久取消使用资格。
- 1.4 实验室内所有仪器一经预约后,最晚可提前12小时取消预约
- 1.5 样品制备、装载过程中必须戴手套,严禁用手直接触碰真空腔室内取出的零部件。
 不可戴手套操作鼠标、键盘。
- 1.6 遵守仪器标准操作规程(SOP),严禁未经允许进行培训内容、SOP 以外的其他操作,不可擅自修改仪器硬件及软件设置、使用非指定部件。
- 1.7 所有测试数据必须保存到规定路径上传至 storage 共享存储系统,严禁使用 USB 拷贝数据,仪器电脑严禁私自接入外部网络。
- 1.8 测试进行过程中不得擅自离开实验室,实验结束后如实填写实验记录本。
- 1.9 务必保持制样区域、仪器操作区整洁,相关工具、资料放置在指定位置,个人物品 请放置于实验室储物柜内。测试完毕请及时带走样品,实验室不负责保管样品,且 会定期清理无关样品
- 1.10 严格遵守学校规章制度,有毒废物、试剂、器皿、利器等分类回收。
- 1.11 仪器出现故障以及异响、异味、冒烟等异常现象时,请第一时间联系实验室技术员, 不得隐瞒不报、擅自修理设备
- 1.12 实验室人员离开时随手关门, 夜晚测试结束后, 离开前需关灯。
- 1.13 因违规造成仪器损坏,用户其课题组承担一切维修费用。
- 1.14 因人为原因造成安全事故,相关责任人将受到通报批评及相应处罚。

2. 扫描电镜阴极荧光联用系统使用制度

该仪器遵从学校"科研设施与公共仪器中心对大型仪器设备实行的管理办法"和"集中投入、统一管理、开放公用、资源共享"的建设原则,面向校内所有教学、科研单位 开放使用,根据使用机时适当收取费用;并在保障校内使用的同时,面向社会开放。

2.1 使用方案

(1) 培训测试:用户提出培训申请,技术员安排培训。培训内容包括:实验室规 章制度说明、冷场 SEM 基本原理、硬件构造及各部分功能介绍;常规样品制样、仪器 的标准操作流程、软件操作、数据处理及测试注意事项。该过程中用户在技术员指导下 进行操作仪器并进行数据处理。

(2) 自主测试-初级:用户独立制样、装样;独立操作 SEM 进行常规探头(SE-Upper/Lower)形貌观察、EDS 能谱测试(点扫、线扫、面扫),并进行数据处理及上传。

(3) 自主测试-高级:用户独立操作扫描电镜除初级操作外,使用 CL 探测器。

(4) 送样测试:用户预约时提供样品信息及测试要求;用户负责制样,技术员操 作仪器并做基本数据处理。

2.2 使用注意事项

(1) 该仪器的培训、自主预约目前只对校内用户开放,校外用户可送样测试。

(2) 在实验记录本上如实登记 fiashing 电流、引出电压,做好使用、故障记录;

(3)为用户提供不同规格的平面样品台和截面样品台、导电胶带等制样工具,请 合理使用,用户不得私自带走。

(4)请严格遵守预约时间使用仪器,无故迟到、使用超时均属于违规,违规次数 过多将会通报或者禁用仪器(视情节严重情况进行处罚)。如需延长、调换时间段,在 技术员同意下可与其他使用者协商。

(5)目前,拥有权限的用户若超过 2 个月未使用仪器,权限会自动消失,需重新 考核授权。

(6) 若因考核不达标需要重新培训的用户,其培训费用是初次培训的1.5倍。

(7) 若因人为操作导致仪器故障,如 CL 抛物镜撞到样品、样品传送杆操作不当导致损坏、样品台尺寸选错或高度超过量高规导致撞坏腔室内零部件、私自测试磁性样品导致样品被吸入镜筒等问题,由所属课题组承担维修费用之外,将对该用户实施降级重

考、培训费翻倍惩罚。

2.3 预约制度

为充分利用仪器效能、服务全校科研工作,根据测试内容与时间的不同,扫描电镜 实验室制定了 SEM 的 7*24 小时预约制度。

予	颜的时段	预约时间/每人	测试内容	
工作时间	周一至周五:	与人次可预约扣时∖20 min	自主测试,送样测试	
工工上的间	8.30 至 17:30	每八次可顶约初的250 mm		
	周一至周五:		自主测试	
北丁佐时间	17:30 至次日 8:30	每人次可预约扣时\20 min		
刊日本1日11月11月	周末及节假日: 全	每八八可顶约机时至30 mm		
	天			

2.4 培训考核制度

(1)由实验室技术员介绍实验室规章制度、安全管理规范、仪器设备原理、基本 硬件知识。

(2) 上机培训,内容包含:样品送样及制样、仪器标准操作规程、相应数据处理。

(3)上机培训结束后,培训者需在一周内进行至少一次自主上机练习,在技术员的监督下进行独立操作。待培训申请人熟练操作后通知技术员,安排时间进行上机考核。

(4)技术员认为培训者达到相应级别的独立操作水平后,给予培训者仪器以及门禁权限,培训者即可独立使用仪器,但仅限在其用户级别所允许的可操作实验范围内使用。

2.5 仪器故障报告

(1) 仪器使用过程中,仪器出现故障及错误提示信息时,应即时通知技术员;

(2) 请在第一时间将故障及错误提示信息截屏,并保存在桌面"Error Report"文件 夹,截屏文件命名请按照"导师名-用户名-样品名-故障时间(具体到分钟)"; 在《仪器 设备使用记录本》的备注栏做简单说明。

2.6 物质科学平台致谢格式

The author thanks (Dr. XXX from) Instrumentation and Service Center for Physical Sciences at Westlake University for (the assistance/discussion/supporting in) SEM measurement/data interpretation.

3. 扫描电镜阴极荧光联用系统标准操作步骤

3.1 仪器基本信息

主机: 仪器型号为 Hitachi SU8600,包括真空系统、电子光学系统、检测器系统。 检测器包括 Upper/Lower 两个二次电子(SE)探测器用于收集二次电子信号,也可以收 集背散射电子信号,用于观察形貌和成分衬度;还包括一个伸缩式背散射电子检测器 (PD-BSE),收集背散射电子信号,用于观察成分衬度。

阴极荧光检测器:型号为 Gatan Monnac Pro,配备 PMT 探测器、CCD 探测器,包 含 Digiscan 系统,具备全/单光成像、单点光谱、角分辨功能和波长角分辨功能。

无窗能谱仪:型号为 Oxford Ultim EXTREME,收集 X 射线信号,用于元素分析,分析范围为 Be₄ ~ Cf₉₈,元素分析下限:Li₃。

主要技术参数:

放大倍数: 20~5000000倍 电子枪类型: 冷场发射电子枪

SE 分辨率: 15 kV @ 0.6 nm (工作距离 4 mm); 1 kV @ 0.7 nm (工作距离 1.5 mm, 减速模式)

CL 分辨率: 优于 0.2nm (12001p/mm 光栅, P 标准样品)

CL 光谱探测范围: 185-980nm (PMT 探测器); 200-1100nm (CCD 探测器)

BSE 分辨率: 15 kV @ 3 nm

图 3-1 扫描电镜阴极荧光联用系统图示

3.2 样品准备

(1) 测试样品必须完全干燥不含水分和溶剂,且不可有磁性,根据样品尺寸选择 合适大小的样品台,样品的大小需小于样品台尺寸;

(2)使用导电胶带将样品固定在样品台上;制样时请不要用力压样品,以免破坏 表面形貌;粉末样品制样后,必须用氮气枪吹扫(建议所有类型的样品都吹扫);请务 必将样品固定好,否则会影响图片质量,还有可能损坏仪器;

(3) 将固定好样品的样品台安装在样品托上,调整样品台的高度,使样品最高处的上表面与量高规下底面齐平、或略低 1-2 mm (如图 3-2 所示),并顺时针旋紧锁环;

(a) 样品台结构示意图

图 3-2 (b) 样品台调节高度示意图

警告:制样高度超过量高规(红色虚线上方)的样品,将会撞击镜头系统 或探测器(EDS、CL),维修费用将由所属课题组承担。

3.3 仪器状态检查

(1) 主机状态显示面板:正常状态如图。

(2) 探测器须为待机(Standby)状态

EDS: 两个指示灯, 左边绿灯亮右边蓝灯亮

CL: 指示灯亮黄灯

图 3-4 左边为 EDS 探测器;右边为 CL 探测器

3.4 登录基理系统、进样前检查

- (1) 输入个人大型仪器共享平台账号、密码。警告:不可擅自点注销!
- (2) 登录后,若软件界面出现图 3-5 中两种提示,点击 OK,执行以下操作,清洗电子 源(Normal Flashing)。

Execute Normal Flashing 🛛 💬

图 3-5 Flashing 提示

a) Flashing 窗口点击 Execute 按钮,按钮会短暂变为灰色

图 3-6

b)在 Vacc: 1 kV Ie: 10µA 条件下, 开启电压

c)将 Flashing 窗口右上角 Vext 电压数值记录于实验记录本中

d)关闭电子束高压。

3.5 交换舱面板介绍、载样

SEM 主机样品交换舱、面板

图 3-7

载样过程注意事项以及警告:

- 1. 请保持仪器稳定,严禁过度用力导致仪器晃动;
- 2. 样品传送杆仅可接触末端黑色把手,不可接触杆身,黑色把手只有 LOCK、UNLOCK两个点位,严禁旋到其他位置
- 3. 请确保样品传送杆退出后,为完全卡住状态
- 4. 除了送样/取样,其他时间请勿触碰样品传送杆
- 5. 若因违规操作导致仪器故障,由用户课题组承担全部维修费用。

以下为载样步骤:

(1) 点击软件右上角 EXC 键,等待 EXC 绿灯常亮;

图 3-8

(2) 点击交换舱操作面板上 AIR 按钮,等蜂鸣声结束, AIR 按钮黄灯常亮后, 双手 打开舱门;

图 3-9

(3) 将传送杆黑色把手旋至 UNLOCK 面朝上,将样品台插入传送杆尾端样品夹;

(4) 将传送杆黑色把手由 UNLOCK 旋至 LOCK 面朝上,并确认样品台不会因为推送传送杆而脱落;

图 3-11

- (5) 关上交换舱门,点击交换舱操作面板上 OPEN 按钮,等 OPEN 按钮黄灯常亮;
- (6) 左手扶住交换舱,保持仪器上半部分不晃动,右手捏住黑色把手,平稳向样品 舱推送传送杆,直至插入限位指示灯亮蓝灯(如图 3-12 所示),可在 ChamberScope 窗口实时观察到样品舱内样品台位置;

图 3-12

(7) 将传送杆黑色把手由 LOCK 旋至 UNLOCK 面朝上,再抽出传送杆至完全卡住。

(8) 点击交换舱操作面板上 CLOSE 按钮,关闭中间舱门。

(9) 在屏幕上 Exchange specimen 对话框中按照如下操作选择样品台尺寸、导航拍照

警告:请谨慎对待下方对话框,样品台尺寸选择错误、实际高度高于量高 规将对镜头系统造成严重损害,全部维修费用由用户课题组承担。

Exchange specimen		
Select desired condition then s	elect the specimen stub.	
a)	b)	c)
Option to use	Size Keep the previous value None (Remove the specimen) 15mm 3mm 10mm 15mm T5mm	Height : Standard Adjust the specimen height at 36 mm 36mm (Standard) The tallest point Specimen stub Lock nut Specimen holder
CameraNavi Obtain CameraNavi image d)		Finish

- a) Option to use 不用勾选 Air Protection
- b) Size 根据当前使用的样品台直径,选择正确的样品台尺寸选项,不可选择 小于样品台实际尺寸的选项。(提示: 1 inch = 25.4 mm);
- c) Height 确认样品上表面至 holder 最底端的高度低于量高规(低于 36mm)
- d)CameraNvai 勾选样品导航拍照
- e) 点击 Finish
- f) 在弹出的 CameraNvai 对话框中选择 Auto, 如图 3-14 所示, 等待样品台完成导航拍照即可

图 3-14

3.6 电子束参数设置、探测器选择

- (1) 设置加速电压
- a) 在 Electron beam 对话框(图 3-15) Vacc 下拉列表中选择加速电压,或手动输入 电压值。正常导电样品选择 3~5Kv,可根据实际样品进行调节,若对样品条件 不确定,建议从较小电压开始尝试,避免损坏样品表面;
- b) Ie 值(电子枪发射束流) 10 微安,已设置好,不可随意改动;

(2) 设置电流强度

- a) 在 Probe current 对话框(图 3-16) Spot intensity 下拉列表中选择照射样品的束 斑强度,常规样品选择 30~50,可根据实际样品进行调节。束斑强度值越大, 对应的 Probe current (探针电流)越大;
- b) APT-Size(物镜光阑直径)已设置好,不可随意改动。

Probe current			
Spot intensity	APT-Size		
30 🔻 📩	No.2 – 50µm	-	
Current measurement	t Data		

图 3-16

(3) 点击 Electron beam 框中的 ON 键,打开电子束。

Electron be	am
ON	Vicc[kV] le[µA]
OFF	20.00 - 🗘 10 - SET
BM	Deceleration
Flashing	

图 3-17

3.7 观察拍照

(1) 轨迹球介绍

a) Tracball: 按照轨迹球滚动的方向移动当前视野

- b) XY 开关:中间位置时,X(水平方向)、Y(垂直方向)都可通过轨迹球移动视野;拨到X位置时,仅仅可移动X(水平方向)视野;拨到Y位置时,仅仅可移动Y(垂直方向)视野。
- (2) 手动操作面板介绍

a) 倍数

旋钮:顺时针倍数放大,逆时针缩小

LOW MAGE 按钮: 蓝灯亮表示开启低倍模式 (最高 20000 倍), 无灯表示高倍模式

b) 电子束移动

X、Y 旋钮: 偏移图像,移动当前视野(通过移动电子束位置)

c) 像散、对中

X、Y 旋钮: 当 STIGMA 蓝灯亮时,执行消像散;ALIGNMENT 蓝灯亮时,执行对中。 MODE 按钮:单击此按钮,ALIGMENT 蓝灯亮,进入电子束对中模式。如图 3-20 所示, 对应软件 Alignment 对话框中四种对中模式,单击 MODE,可将当前对中模式切换至下

Beam align	Manual	Auto
Aperture align	Reset	Reset All
Stigmator align X		
Stigmator align Y		
Low Mag position		
O Low Mag position		
Off Off Stigmator correction		
 Low Mag position Off Stigmator correction – X 		6
 Low Mag position Off Stigmator correction X Y 		6 8

图 3-20

d) 聚焦

COARSE、FINE 旋钮:手动粗调焦、细调焦。焦距变化量与这两个旋钮的旋转量有关。 AUTO 按钮:自动聚焦。

e) 亮度、对比度

CONTRAST、BRIGHTNESS 旋钮:手动调节对比度、亮度。 AUTO 按钮:自动调节亮度、对比度。

f) 扫描速度、拍照

SCAN SPEED (1 to 4) 按钮:每个按钮可切换两种扫速,前3个按钮扫描速度依次变慢,第4个按钮为小窗口扫描模式。与软件上方菜单栏 scan 窗口中的四个按钮作用相同,如图 3-21 所示。

图 3-21

SAVE 按钮: 以当前的扫描速度,保存当前正在观察的图像。

一个对中模式。若 MODE 按钮持续闪烁,表示当前仍处于对中模式。

CAPT 按钮: 捕获并保存图像。

- (3) 找样品、聚焦(步骤一)
 - a) 点击手动操作面板 LOW MAG 按钮,指示灯亮,进入低倍模式(最高 20000 倍)
 - b) 在 SEM MAP 窗口 (如图 3-22 所示)中双击样品感兴趣区域,也可滑动轨迹球, 将目标区域移动到极靴下方;

- c) 旋转手动操作面板上 COARSE 旋钮、MAGNIFICATION 旋钮,调焦距、放大倍数交替进行,至图像清晰;也可点击 AUTO 按钮自动聚焦
- d) 点击 LOW MAG 按钮,切入高倍模式后建议用 FINE 旋钮细调焦
- (4) 对中(每次更改电压、Probe current、工作距离等参数后,需要进行对中 步骤二)
 - a) 软件 Alignment 对话框中,点击 Beam Align,调节手动操作面板 ALIGNMENT
 X/Y 旋钮,使圆斑落在靶环正中,如图 3-23 所示

b) 如图 3-24 所示,选中 Aperture Align,调节手动操作面板 ALIGNMENT X/Y
 旋钮至图像不再摇摆

c) 如图 3-25 所示,选中 Stigmator alignX,在所需要的放大倍率下,调节手动操作 面板 ALIGNMENT X/Y 旋钮,至图像不再摇摆,而是以十字线中心为中心周 期性地放大缩小,然后选中 Stigmator align Y,同样操作

Alignment		
Beam align	Manual	Auto
Aperture align	Reset	Reset All
 Stigmator align X Stigmator align Y 		
O Low Mag position		
Off		
Stigmator correction		
0 x		() 6
0 у		
		Reset

图 3-25

- d) 上述三个步骤按顺序做完后,单击 Alignment 对话框中 off 键,退出对中
- (5) 高倍聚焦(步骤三)
 - a) 在最佳聚焦位置上,使用手动操作面板上 FINE 旋钮细调焦,若在聚焦过程中图像出现位移,做上述(4)对中操作步骤 b)Aperture Align 即可

b) 聚焦过程中,欠焦或过焦时,图像若呈某一方向拉长,则存在像散。此时需调 焦至图像无拉伸变形,如图 3-26 所示,其中(a)、(b)为过焦或欠焦状态,(c)为聚 焦状态。

(b)

图 3-26 (c)

c) 聚焦后,通过手动操作面板上 STIGMA X/Y 旋钮调节像散:先调节 X 旋钮至 图像清晰且无拉伸变形、再调节 Y 旋钮至图像清晰且无拉伸变形。如图 3-27 所 示。

图 3-27

- d) 消像散过程中若图像发生位移, 做上述 3.6(4)对中模块中的 c)步骤即可
- e) 图像调节清晰后,放大至下一倍数,再次聚焦、消像散。

- f) 可通过手动操作面板随时调节图像的明亮度和对比度,建议 AUTO 按钮自动调
 节
- g) 按顺序重复上述 a)至 f)步骤,直至在目标倍数之上完成调节,再降至目标倍数 拍照,可获得更清晰效果
- (6) 保存图片(步骤四)
 - a) 点击手动操作面板上 CAPT 按钮或者软件最上方 Capture All 区域中右侧黑色图 标
 - b) 拍照结束后会弹出保存对话框,保存路径为D盘/User image/PI课题组/用户姓名 /日期(每天新建),点击 Save 按钮后即完成图像保存
 - c) 点击手动操作面板上 SCAN SPEED 按钮 1,继续进行后续形貌观察;

更改图像拍照模式:

如图 3-28 所示, 右击软件上方 Capture All 区域右侧图标, 弹出 Cature setting 对话框

Rapid/Fast 模式:在8(帧平均)至1024(帧平均)之间选择帧数,使用帧平均模式生

成图像。帧数越多, 生成图像的时间越长。主要用于拍摄不耐高压、荷电强以及经过 慢扫会发生变形的样品。

Css模式:使用线扫描平均模式对样品进行拍照,可在 20(秒每帧)至 320(秒每帧) 之间选择扫描速度。

Slow 模式: 使用单帧慢扫描模式拍照, 可在 20(秒每帧) 至 320(秒每帧) 之间选择 扫描速度。

3.8 结束观察

取样过程注意事项以及警告:

- 1. 若使用了 EDS、CL 探测器,请先退出探测器
- 2. 保持仪器稳定,严禁过度用力导致仪器晃动;
- 样品传送杆仅可接触末端黑色把手,不可接触杆身,黑色把手只有 LOCK、UNLOCK两个点位,严禁旋到其他位置
- 4. 请确保样品传送杆退出后,为完全卡住状态
- 5. 除了送样/取样,其他时间请勿触碰样品传送杆
- 6. 若因违规操作导致仪器故障,由用户课题组承担全部维修费用。
- (1) 单击操作界面右上角 EXC 键,等待绿色指示条常亮,如图 3-29 所示。

图 3-29

- (2) 点击交换舱面板上 open 按钮,按钮常亮、蜂鸣声结束后,旋转传送杆黑色把手至 UNLOCK 面朝上
- (3) 捏住黑色把手,将传送杆缓慢水平往前推,观察到样品交换舱上 SET 插入限位指示 灯亮后,停止推动传送杆,此时旋转把手至 LOCK 面朝上,再抽出传送杆至卡紧

- (4) 点击交换舱面板上 vent 按钮,中间舱门关闭后交换舱内充入空气,等待 open 按钮 常亮且蜂鸣声响起后,打开交换舱门,取出样品台
- (5) 关闭交换舱门,点击交换舱面板上 evac 抽真空,使样品交换舱处于真空状态。
- (6) 在屏幕上 Exchange specimen 对话框中选择 None, 如图 3-30 所示, 再点击右下角 Finish, 结束取样。

ion to use	Size	. Keen the previous value	-	Height : Standard
one		None (Remove the specimen)	*	Adjust the specimen height at 36 mm
		10mm		36mm (Standard)
				E The tallest point
				Specimer stub
		omm		Lock nut
		- Comm		holder

图 3-30

4. 能谱仪的操作步骤

(1) 打开能谱软件

账号: user, 解锁密码: oxford;

在电脑桌面点击"AZtec"软件图标,进入软件页面后点击"New Project"建立新的文件,或"Open Project"打开原来已存在文件。

Walcome to A 7tec
Projects Demo Data Help
Project 1
ceshi
nb5mo20Ru35Re30Rh10
3+3
Rew Project Den Project

图 4-1

(2) EDS 探头插入使用

点击软件右下方小探头图标,在探头窗口中点击"Insertion"→"In",此时探头缓慢 插入电镜样品舱中,直至 In 按钮变成灰色,Activity 状态为 Not Moving,即代表 EDS 能谱探头已就位。

图 4-2

(3) 选择点/线/面扫描

点扫 (Point & ID)、线扫 (Linescan)、面扫 (Map),可以在菜单栏红色图框区 域中进行选择。

. .

(4) 设置样品信息

在"Describe Specimen"页上可以对 Project Note、Specimen Note、Site Note 等进行说明,以便记录样品信息方便之后数据分析。

Point & ID >> Describe Specimen	Image: Scan Image Image: Scan Image
Project 1'	Sunnary Pre-defined Elements
	Project Notes
	Click here to begin entering notes about your project.
	Specimen Notes for 'Specimen 1'
	Click hare to begin entering notes about your specimen.
	Site Notes for 'Site 1'
	Click here to begin entering notes about this site.
	Specimen Coating Information: Specimen is coated See to Profile Mean calibration element is coated Calibra element is coated Save to Profile

图 4-4

(5) 获取 SEM 图像

根据样品情况在 SEM 软件上选择合适的激发电压(激发电压一般为特征能量值的 2-3 倍), spot 选择 50, WD 为 15mm,调整好聚焦、像散后,让 SEM 图像窗口为 Run

状态,点击能谱软件"Scan Image"页面中"START",如图 4-5 所示,获取目标区域的 SEM 图像。

图 4-5

(6) 数据采集(注意:此步骤运行前需关上 SEM ChamberScope 窗口中 CCD)

在能谱软件 "Aquire Spectra"页面左边工具栏(图 4-6 红框②)选择点、区域等类型, 在图片上框选目标区域进行数据采集, Map Sum Spectrum 实时显示能谱数据。在图 4-6 中④右侧框中选择含量以百分比显示,点击图 4-6 中⑤左侧图标,在红色框⑥中根据需 要选择测量样品的元素质量比或者原子比,点击 Apply。

图 4-6

注意: Map 和 Line Scan 模式中信号采集需要手动停止,即点击软件中 STOP 按钮

变为 Stopping, 待采集完这一帧后变为 STOP, 即表示停止信号采集。

(7) 元素定性/定量分析

a) 信号采集完后,点击菜单栏中"Confirm Elements"页面,结合样品信息对选定区 域进行元素确认,选择目标元素谱峰,去除误差峰,如图 7-11 所示

EDS-SR	Ро	int & 1D 🔁	Describe Specimen	AZteclave	Scan Image Acq	ire tra Confirm Elements	Calculate Composition	Compare Specia Rep	ort Its Custom
						Contrim Liem	ents 🗘 Settings		
₩ ▲ • 0 • 1 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1	2 25		4 45	5 55 6 65	All Elements Element by Difference Element by Solchiometry Combined Element: Orgen Normalize Results Result Type: Appy Appy 75 8 8.5 9	sp Sum Spectrum O ompare. O Atts. 421 342 208 28 20 28 28 Copy
	н				He		Previous	Next	
	Li Be			в	N O F No				Peak
	Na Mg			A 3	P S C Ar	Carbon			AutoID
	K Ca S	c Ti V Cr	Mn Fe Co Ni	Cu Zn Ga G	ie As Se Br Kr	Dxygen			AutoID
	RD SF	LI TO WO	TC RU Rh Pd	Ag Cd In S	n SD le I Xe	Silicon			AutoiD
	Fr Ra A					copper			AUIOID
		Ce Pr Nd	Pm Sm Eu Go	1 Tb Dy Ho E	ir Tm Yb Lu				
		Th Pa U	Np Pu Am Cm	i BK CF EF F	m Md No Tr				
						AutoID	Pre-defined Clear al		

图 7-11

b)点击"Calculate Composition"页面进行定量分析。在该界面窗后点击 Result Type 可以选择输出结果为质量百分比或者原子百分比,如图 7-12 所示

File View Tec	hniques 1	Tools Help				
EDS-SEM	Poi	nt & 10 🔁	Deactive Activities Activities Activities Scan Image	Confirm Demonstr	Compare Sports	Report Security Custom
				Calculate Composition 🤻 Settings		
Available Ten	nplates		Quant Result Details			
Summary Tal Comparison Summary Tal Full Results T Spectrum De Spectrum Pre	ole Single of Results ole - Multipl able (custon tails - Detai ocessing - P	Spectrum Two Spectra le Spectra nizable) - Single Spectrun is Yrocessing	Labet Element Lia Type: Processing Option: Specimen Coating: Beam Calibration Brenent Coating: Automatic Line Selection: Nationalist Line Selection:	Map Sum Spectrum Current Spectrum All Blements Off Enabled Enabled		Requartify
Quant Res v Processing C	ults Viev iewed Data: option Used	N : Map Sum Spectrum : All Elements Processed	Result Type: Weight % •			
Element •	Wt%	Wt% Sigma				
C	11.75	0.10				
0	9.53	0.05				
Si	2.24	0.06				
Cu	76.48	0.11				
-otal	100.00) di				_

- 图 7-12
- (8) 保存数据和报告

a) 点击能谱软件右上角 Report Results,如图 7-13 所示,选择路径保存、命名报告后,屏幕自动弹出能谱 word 报告。(保存路径默认为当前 Project- Report 文件夹;若多份数据需保存至一个 word 中,点击 Report Results 右侧下拉菜单栏中"Append Report",且保存过程中不要关闭该 Word 文档)

图 7-13

b) 点击能谱软件左上角"File"→ "Save project as"来保存整个 project;

c)如果需要谱峰数据以便于后续导入数据作图,可在谱图空白处右击选择 Export,然后选择 EMSA,数据保存成 TXT 格式。

(9) 退出 EDS 探头

点击软件<mark>右下方小探头</mark>图标,在探头窗口中点击"Insertion"→"Out",此时探头缓 慢退出电镜样品舱。

5. CL 操作步骤

- 5.1 在进行 CL 测试之前, 需要在 SEM 软件中按如下顺序操作:
- 1、将z轴高度降为14mm
- 2、 高倍调焦、消像散、光阑对中
- 3、确认 WD 在 10-15mm 之间
- 4、 高低倍校准
- 5、打开样品舱摄像头
- 6、切到高倍模式
- 5.2 前期准备操作
- 1) 在电镜主机背后将能谱接口换成 CL 接口, 如图 5-1 所示

(a) 能谱接口

图 5-1 (b) CL 接口

2) 打开 CL 软件

图 5-2

图 5-3

 左侧 microscope 菜单栏中,打开 Monarc Setup,点击 Inserted,可在 SEM 软件中看 到抛物镜缓缓进入,若有撞击风险,立即点击 stop

Abort Insertion	
Click STOP to halt the mirror insertion	

图 5-5

4) 等到 Monarc Setup 中 mirror 右侧 quick set 亮绿灯,必须在 SEM 软件中切到高倍模式,点击 Sample 右侧 quick set,软件提示对样品进行聚焦,如图 5-6。聚焦完成后,WD 需要在 15mm 以内,若超过 15mm,则先上升 z 轴使 WD 小于 15mm (一定要大于 10mm),图 5-6 中点 ok,出现图 5-7 中弹框提示会将样品台 z 轴上升,点击 ok,又会出现聚焦弹框,均按照提示完成即可。

Focus SEM ×					
Verify sample is in focus, then click OK					
OK Cancel					
图 5_6					
图 2-0					
DigitalMicrograph X					
QuickSet enabled. Set stage height to 9.352 (mm) for CL imaging?					
OK Cancel					

图 5-7

5) 最终 sample 右侧亮绿灯,如 5-8 所示,此时样品上表面处于抛物镜的焦平面上

图 5-8

5.3 全光图/单光图

 在 SEM 软件中关掉相机,在 CL 软件左侧 microscope 菜单栏中,打开 CL Detector Control,点击 Med/High (PMT 探测器采集的信号量,自行选择)

图 5-9

- 2) 全光图
- 点击软件左侧 Techniques 中 CL Imaging,选择 Unfiltered (全光),然后点 view,出现 SEM 以及 CL 全光图,点击 Capture 拍照,右侧可设置曝光时间

图 5-10

 图像拍摄结束后,点击 VIEW 右侧 SEM 查看图像,右键 Save Display as 保存,格 式选择 tif

图 5-11

- 3) 单光
- 1. 如图 5-11 所示,点击 WL Filtered,WL 右侧输入波长

Technique Man	ager				▼	д	×
🚰 CL Imag	ing						
CL Imagin	g						
	Unfiltered	d 🚺	WL F	iltered			
	WL (nm):	0.0					
	Bandpass (nm):	1.56		15 25	5	0	
	Filter:	Out	In				
Scan							
	Spot Focu	is Ro	tate			*	•
View	Pixel Time (µs):	1.0	÷	Search	Pre	vie	w
Capture	Pixel Time	8.05	Í				
CL MultiN	lap						
Open	Map List					•	-]
Save							Đ
Edit							
Capture						Ľ	נ

图 5-11

如图 5-12 所示,在软件左侧 microscope 菜单栏中,打开 CL Spectrometer State,设置 Slit (狭缝) 宽度,等到下方 Status 右侧显示 Ready 即可

CL Spectrometer State				
Imaging Spectrum ARCL				
Itered	WL Filtered			
MIRROR	300	1200		
199.995				
0.961				
Out In		*		
Controller R	eady			
	ctrometo ng Spect Itered MIRROR 199.995 0.961 Out In Controller R	trometer Stat g Spectrum Itered WL Fi MIRROR 300 199.995 0.961 Out In Controller Ready		

图 5-12

3. 在 5-11 图中,点击 view/capture 进行单光图观察或拍照

5.4 光谱

1. 点击软件右侧 Techniques 中 spectroscopy

图 5-13

- CCD 采一段谱: spectrum 中输入波长, 在软件左侧 microscope-CL Spectrometer State
 中, 设置 Slit (狭缝) 宽度, 点 view
- 3. PMT 采系列谱: CL-spectrum-Serial 中输入波长

Technique Ma	nager	→ 쿠 ×
🚰 Spectro	oscopy	
Scan		^
	Spot Focus Rotate	*
View	Pixel Time (µs): 1.0 😫 S	earch Preview
Capture	Pixel Time 8.05	
CL		
	Spectrum	
	Range (nm): 105 423	0.32 nm/ch
	WL (nm): 543.0 2.28	BeV
	Res. (nm): 1.59 2	4 15
	Optimization: SNR Res.	User 🔀
View	Exposure (s): 0.1	
Capture	Exposure (s): 2.0	
	Contral contractions	
CL Spectr	rum - Serial	
Wav	relength Range (nm): 400.0	600.0
Capture	Dwell Time (s): 0.5	Auto slit width
Capture	0.0	

图 5-14

5.5 结束 CL 观察

(1) 关掉所有 view/capture 按钮, 打开左侧 microscope 菜单栏中 Monarc Setup, 点击 Retracted, 可在 SEM 软件中看到抛物镜缓缓退出

(2) 在电镜主机背后将 CL 接口换成能谱接口

6. 真空转移盒

真空转移盒结构如下图所示:

其样品台高度可以通过六角螺丝调节

操作步骤如下:

于惰性气氛中在上图中样品台制备完样品并封闭后,传样过程同普通样品台操作步骤相同,在样品进入样品仓前需要去除真空转移盒上盖,操作如下:

1.样品杆停留在此限位处

4.真空转移盒上部分被旋出

2.旋转螺杆使上下刻度线平行,螺纹杆自动下降

5.螺纹杆提出使上下刻度线不平 行此次螺纹杆固定

之后送样操作步骤如下:

(1) 将样品杆返回至限位处, 红色灯亮;

3.旋转中心旋钮并下按,逆时针 旋转螺母

(2) 点击控制面板 OPEN 按钮,将样品送至样品仓,之后操作同普通送样一致。 观察结束取出样品时,按照相同步骤操作螺纹杆,将真空转移盒上盖旋紧,并取出。

注意: 只有 Nob 处于原始位置(红灯常亮),样品仓和交换仓的仓门才可以打开, 否则仪器报错。

备注:真空转移盒借用时做好借出/归还登记和检查,送样前必须先登录预约系统, 取样完成后方可退出系统。